学生の頃使いたかったサービス

【学生に戻れるなら使いたい】未来に必要な力が効率的に得られる!お得な優秀サービス

おすすめの数学参考書

【完全版】高校数学の勉強法とオススメの参考書をレベル別にまとめてみました。

対数 理系微分

【対数微分法を使うコツ】いつどこで、どうやって?複雑な微分が簡単に!

対数微分法

Today's Topic

$$y=f(x)$$

$$\Downarrow$$

$$\log y = \log f(x)$$

としてから微分を考える。

 

今日は対数微分法というテクニックを紹介するね!
どんな時に使うの?
小春
後で解説するけど、複雑な関数を微分したいときに役立つよ。
ナルホド、難易度が上がるほど必要になりそうなテクニックね。
小春

 

この記事を読むと、この問題がわかる!

  • $$y=x^{\frac{1}{x}}$$とするとき、\(y'\)の値を求めよ。
  • $$y=\frac{(x+1)^3}{(x-2)^2(x+3)^4}$$とするとき、\(y'\)の値を求めよ。

答えは最後に発表!

 

対数微分法とは

 

対数微分法は、両辺に自然対数\(\log\)をつけて微分を考える手法のことです。

対数微分法

$$y=x^{\frac{1}{x}}$$

$$\Downarrow$$

$$\log y = \log x^{\frac{1}{x}}$$

 

小春
うぅ〜ん、\(\log\)つけることでますます複雑になっているような・・・。

 

見た目はとてもグロくなりましたが、この微分法は自然対数の次の3つの性質を利用することで、より簡単に微分しようと考えています。

  • 真数の掛け算を足し算で表せる$$\log ab = \log a +\log b$$
  • 真数の分数を引き算で表せる$$\log \frac{a}{b} = \log a -\log b$$
  • 指数を前に下ろせる$$\log a^n = n\log a$$

 

では実際に、具体例を見てみましょう。

 

対数微分法|【例題】対数の微分公式を使う場面

例題

\(f(x)=x^x\)の導関数\(f'(x)\)を求めよ。

 

小春
対数どこにもないよ?
そうだね、ところでこの\(f(x)\)の微分できそう?
小春
うぇ、難しそう。だって関数の関数乗だよ?
その通り。ここで対数微分の出番だ。そのまま微分するのは難しけど、自然対数にすることで微分しやすくなるときに使うと有効だよ。

 

(解答)

\(f(x)=x^x\)に対し、\(\log f(x)\)を考える。

\begin{align} \log f(x) &= \log x^x\\\ &= x\log x\\\ \end{align}

 

まず左辺\(\log f(x)\)を\(x\)で微分することを考えましょう。

 

この自然対数は変数部分である真数が関数になっているため、合成関数として見なせます。

つまり左辺は合成関数の微分法を使えばいいというわけです。

合成関数について復習したい人はこちらを参考にしてください。

 

合成関数を微分するためには、

ポイント

  1. 合成されている2つの関数を見つける。
  2. それぞれ微分する。
  3. 微分した値を掛け合わせる。
小春
外ビブン×中ビブンだったね!

のようにすればよかったのでした。

 

まず\(\log f(x)\)は、\(\log u\)と\(u=f(x)\)の合成関数とみることができます。

 

よって、

\begin{align} \frac{d}{dx}\log u &= \frac{d}{du}\log u\times\frac{du}{dx}\\\ &= \frac{1}{u}\cdot u'\\\ \end{align}

 

\(u\)を\(f(x)\)に戻して、

$$\frac{d}{dx}\log f(x)=\frac{f'(x)}{f(x)}$$

となりました。

 

次は右辺。\(x\log x\)の微分ですが、これは積の微分法を使えばすぐにわかりますね。

積の微分法について復習したい人はこちらを参考にしてください。

 

積の微分法は『微分そのまま+そのまま微分』でしたので、

\begin{align} \left(x\log x\right)' &= x'\log x+x\left(\log x\right)'\\\ &= \log x +x\cdot\frac{1}{x}\\\ &= \log x +1\\\ \end{align}

となりました。

 

以上より、

$$\frac{f'(x)}{f(x)}=\log x +1$$

とわかったので、両辺\(f(x)\)倍してあげて

\begin{align} f'(x) &= f(x)\left(\log x +1\right)\\\ &= x^x \left(\log x +1\right)\\\ \end{align}

 

ポイント

対数微分法は、指数が関数の場合に微分しやすくすることができる。

ただし合成関数の微分法、積の微分法をお忘れなく

 

まとめ

それではまとめをするよ!

 

まとめ

  • 対数微分法をするためには、両辺に対数をとり、各辺それぞれ微分して考えれば良い。
  • 指数が複雑な関数になっているような関数を微分するときには、対数微分法が有効打になる。

 

対数微分法は使用頻度こそ低いですが、微分の難易度をグッと下げることができる便利なツールになります。

対数微分法それ自体はそれほど難しくなく、どちらかといえば単体で学ぶよりも応用問題を通して学んだ方が効果的ですよ。

 

是非いろんな問題を解いて、対数微分法が活躍する問題を見つけてみてください。

以上、「対数微分法について」でした。

 

チェック問題

 

 

例題

$$y=x^{\frac{1}{x}}$$とするとき、\(y'\)の値を求めよ。

 

両辺に自然対数をとると、

$$\log y = \frac{1}{x}\log x$$

 

右辺に合成関数の微分法を適用し、\(x\)について微分すると、

\begin{align} \frac{d}{dx}\log y &= \frac{d}{dy}\log y\cdot \frac{dy}{dx}\\\ &= \frac{1}{y}\cdot\frac{dy}{dx}\\\ \end{align}

 

左辺に分数関数の微分法を適用し、\(x\)について微分すると、

\begin{align} \left(\frac{\log x}{x}\right)' &= \left(\log x\cdot x^{-1}\right)'\\\ &= \left(\log x\right)'\cdot x^{-1} +\log x \left(x^{-1}\right)'\\\ &= \frac{1-\log x}{x^2} \end{align}

 

よって、

$$\frac{1}{y}\cdot \frac{dy}{dx} = \frac{1-\log x}{x^2}$$

より、両辺\(y\)倍して

\begin{align} \frac{dy}{dx} &= y\cdot \frac{1-\log x}{x^2} \\\ &= x^{\frac{1}{x}-2}\left(1-\log x\right)\\\ \end{align}

 

 

例題

$$y=\frac{(x+1)^3}{(x-2)^2(x+3)^4}$$とするとき、\(y'\)の値を求めよ。

小春
うわぁああああ、グロいいい泣

 

両辺に自然対数をとると、

$$\log |y| = 3\log |x+1| -2\log|x-2| -4\log|x+3|$$

(※見切れている場合はスクロール)

今回のように関数が負になる可能性がある場合は、自然対数をつけるときに絶対値をつけて強制的に正のときを考えるようにするよ!

 

右辺に合成関数の微分法を適用し、\(x\)について微分すると、

\begin{align} \frac{d}{dx}\log y &= \frac{d}{dy}\log y\cdot \frac{dy}{dx}\\\ &= \frac{1}{y}\cdot\frac{dy}{dx}\\\ \end{align}

(※見切れている場合はスクロール)

 

左辺を\(x\)について微分すると、

\begin{align} \left( 3\log |x+1| -2\log|x-2| -4\log|x+3|\right)'  &= \frac{3}{x+1} - \frac{2}{x-2} -\frac{4}{x+3}\\\ &= -\frac{3x^2+x+16}{(x+1)(x-2)(x+3)}\\\ \end{align}

(※見切れている場合はスクロール)

 

よって、

$$\frac{1}{y}\cdot\frac{dy}{dx} = -\frac{3x^2+x+16}{(x+1)(x-2)(x+3)}$$

より、両辺\(y\)倍してあげて

\begin{align} \frac{dy}{dx} &= -y\cdot \frac{3x^2+x+16}{(x+1)(x-2)(x+3)}\\\ &= -\frac{(x+1)^2 (3x^2+x+16)}{(x-2)^2(x+3)^5}\\\ \end{align}

 

このように見た目がグロい関数でも、対数微分法によって和の形に直して、ただ微分するだけの問題に帰着させることができるよ!

\今回の記事はいかがでしたか?/

-対数, 理系微分

© 2024 青春マスマティック Powered by AFFINGER5